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• This work develops a synergistic combination of Markovian and 

interval optimization for unit commitment problems with wind 

generation and transmission 

• Motivation: Important to accommodate high penetration of wind

– DOE’s goal: 20% wind by 2030

– Obama’s goal: 80% clean energy by 2035

– In Spain, an unprecedented decrease in wind generation in Feb. 2012 is 

equivalent to the sudden down of 6 nuclear plants (4 is not unusual)

– Texas Emergency Electric Curtailment Plan is called on in Feb. 2008

• Difficulties:

– Intermittent/uncertain nature of wind generation

• Cannot be dispatched as conventional units

• Large uncertainty: Mean Absolute Error (normalized over capacity) of day-

ahead wind power forecast: 15%~20% 

– Complicated structures of transmission networks

– Computational complexity: NP hard problems
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Grid Integration of Distributed Wind Generation: 
A Markovian and Interval Approach

Key idea: Markov + interval-based optimization

– Markovian analysis to depend on local states; interval analysis to manage 

extreme combinations of non-local states

• Local state: Wind generation state at the node under consideration (will be 

extended into zonal state in future work)

– Physical infrastructure supporting this idea: Wind-diesel system

– How to combine two distinct approaches? Divide the generation  

(dispatch decision) of a conventional unit into two components

• Markovian component depends on the local state ni

• Interval component manages extreme combinations of non-local states 

– Constraints innovatively formulated to guarantee solution feasibility for 

all realizations without much complexity

– The effective use of local wind states alleviates the over-conservativeness 

of interval optimization

• System demand constraints

– Based on interval optimization [1]: As long as min. and max. global states 

are feasible, all other realizations within them will be feasible

• Transmission capacity constraints: |Power flow| ≤ fl
max

– Flexibility of local conventional generation used to shrink ranges of RHS

• Ramp rate constraints

– Required for possible local states, local state transitions,           , and 

• The objective function: To approximate the expected cost w/o 

much complexity

– A weighted sum of extreme realizations and the expected realization

• A non-linear MIP formulation

– Non-linearity lies in max/min (negative flow direction) operations in (6)

• CPLEX 12.5.1.0 on a PC laptop with an Intel Core(TM) i7-

2820QM 2.30GHz CPU and 8GB memory

• Illustrative examples

– Conservativeness – Consider 3 nodes, 2 wind farms, 2 units, and 1 hour

– Complexity – Consider 6 wind farms at different buses, 10 states for each

• Solution feasibility and modeling accuracy

– IEEE 30-bus system with 2 wind farms at 40% wind penetration

• Free wind curtailment and load shedding at $5,000/MWh penalty

• Stopping MIP gap 0.1% and then 10,000 Monte Carlo runs

• Our approach provides 5.23% lower simulation cost than pure interval

• Our approach is the most accurate, as it has the smallest APE#

• Computational efficiency

– IEEE 118-bus system

with 3 wind farms

• An important but difficult issue

• Hybrid Markovian and interval optimization to overcome the 

complexity caused by transmission constraints

– Markovian analysis to depend on local state/reduce conservativeness

– Interval analysis to ensure feasibility against realizations

• Problem transformed into a linear form based on monotonicity, and 

then solved efficiently by using branch-and-cut

• Opens a new and effective way to address stochastic problems w/o 

scenario analysis and avoid over-conservativeness

A Markov chain

T∙N possible states at one node
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Previous Work - Markovian Optimization w/o Transmission [2]

• Wind model considering transmission constraints

– With congestion, wind generation cannot be aggregated together

– Wind states for farms at different nodes may not be the same

• Nearby wind farms: Generation aggregated

• Wind farms far apart: States assumed independent

– A Markov chain per node

– With I wind nodes (Markov chains): NI possible global states at time t

• Curse of dimensionality!

A scenario tree

NT possible scenarios at one node

Markovian and Interval Unit Commitment
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The minimum combination of non-local states (where 

other nodes are at their minimum possible states)
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Weights adding up to 1

• Max/Min operations transformed into a linear form

– Idea: Analyze the monotonicity of Markovian nodal injections w.r.t. local 

states, then select indices of local states w/o optimization 

– The Monotonicity Conjecture: The local state with lower wind generation 

provides less or equal Markovian nodal injection at the optimum, i.e., 

• Generalized monotonicity analysis used to support this conjecture

– Overall problem converted linearly after 

• Including (8) as constraints

• Substituting the min/max operations with corresponding states

• State transition matrices given and state probabilities pre-computed
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Solution Methodology – Branch-and-cut

Markovian nodal injection

(containing decision variables)
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Literature Review

• Stochastic programming

– Modeling wind generation – Representative scenarios

– To minimize the expected cost over scenarios

– Difficult to choose an appropriate number of scenarios to balance 

computational complexity and solution feasibility

• Robust optimization

– Uncertainties modeled by an uncertainty set w/o probabilities

– To optimize against the worst-case realization

– Min Max conservative and computationally challenging

• Pure interval optimization [1]

– Modeling wind generation – Closed intervals w/o probabilities

– Capturing the bounds of uncertain inputs in different types of constraints, 

and making decisions feasible for these bounds

– System demand constraints: As long as min. and max. wind realizations 

are feasible, other realizations within them will be feasible

• E.g., wind farm 1 outputs [10 MW, 40 MW], and wind farm 2 [20 MW, 50 

MW]. Total wind generation = [30 MW, 90 MW].

• System demand = 200 MW. Net system demand = [110 MW, 170 MW] 

• If a set of committed units with pi
min and pi

max can meet the 110 MW and 

170 MW, can it satisfy possible demand at 140 MW? 

– Transmission capacity constraints: |Power flow| ≤ fl
max

• A line flow is a linear combination of nodal injections weighted by 

generation shift factors (GSFs can be + or -)

• “Passively” capture bounds of uncertain inputs

– Objective function: To minimize the cost of the expected realization

– Linear and efficient via interval arithmetic; conservative
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Pure Markovian 10

Pure interval 12.86 Conservative!

Our approach 10

How big is transmission capacity 

required for feasible solutions?

No. of dispatch

decisions per unit

No. of flow levels 

per line

Pure Markovian 106 106

Pure interval 2+1 2+1

Our approach 10 + 2 + 1 2 + 2 + 1

Approach Deter. Interval Ours

Optimization

CPU time 2s 53s 1min53s

Cost (k$) 248.66 280.67 253.40

Penalty (k$) 0 0.47 0.01

UC cost (k$) 89.46 67.72 65.22

Simulation

E(Cost) (k$) 314.89 263.26 250.17

APE# 21.03% 6.61% 1.29%

STD(cost) (k$) 74.46 33.77 35.13

Penalty (k$) 40.82 0 0

• Model aggregated wind generation – A Markov chain 

– Given the present, the future is independent of the past

– Advantage: State at a time instant summarizes the information of all 

previous instants in a probabilistic sense for reduced complexity

• Stochastic UC depends on states instead of scenarios

Pre-computed based on 

interval arithmetic

(1)

(2)

Ours

Optimi-

zation

CPU time 41s

MIP GAP 0.01%

Cost (k$) 911.48

UC Cost (k$) 12.83

Simula-

tion

E(cost) (k$) 920.97

APE 1.03%

STD(cost) (k$) 24.64

# Absolute percentage error (APE) = |optimization cost –

simulation cost| / simulation cost × 100%)


